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ABSTRACT 

 

To address the need for a commercially viable solution that can classify waveform data, energies were 

directed to develop a universal neural network (NN) structure (deep learning algorithm) that works for a 

wide variety of system event types (such as; faults, voltage dips, harmonics, etc.). The structure that 

showed the most promise was one that included the use of spectrograms. The technique has shown 

positive results in audio engineering, particularly with respect to speech recognition.  

 

A Power System Neural Network (PSNN) has been developed to use a CNN to classify events within 

waveform data for power systems. The waveform is converted to an array of values by way of 

spectrograms and interpreted as an image. This image is passed into the CNN. The test results on 

independent simulated test and validation datasets show greater than 99% accuracy.  
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1. EXECUTIVE SUMMARY 

A Power System Neural Network (PSNN) has been developed to use a CNN to classify events within 

waveform data for power systems. The waveform is converted to an array of values by way of 

spectrograms and interpreted as an image. This image is passed into the CNN. The PSNN is very 

promising and should work for a wide variety of power system conditions of interest. Ultimately, much of 

the custom code and tools used today and much of the manual effort expended today may be automated 

using this PSNN.  

 

Spectrograms are plots of short time Fourier transforms. Short time Fourier transforms are time sampled 

Fourier transforms of waveform data. In other words, a Fourier transform is performed on a snippet of 

waveform data (a time step). The next snippet of waveform data is also converted to a Fourier transform 

and so forth and so on until the entire waveform is converted to samples of Fourier transforms. Each 

Fourier transform results in a spectrum of intensities for each frequency that exists within that snippet.  

 

Each of the snippets has a spectrum associated with it that describes all the frequency components of that 

snippet. The frequency spectrum of each snippet is horizontally stacked next to each other for all snippets 

of the overall waveform. This creates a two-dimensional array of data where each column represents a 

snippet of time within the waveform and each row represents a frequency (see Figure 13). 

 

 
Figure 1 Spectrogram of a Waveform 

The array of values can be interpreted as an image where at or near the bottom of the image are the low 

frequency values and the top the image are the high-frequency values for each time step. 

 

This image of the Short Time Fourier transform can be passed into a CNN. In the case of power system 

data some additional modification of the data is required before passing it to a CNN for training. No two 

circuits will produce the exact same waveform for a given fault type, but the NN can be trained to classify 

the fault type regardless of the circuit or location on the circuit.  

1.1 POWER SYSTEM FILTER-BANK (CHANNELIZER) 

The FFT maps to a wide spectrum of frequencies. However, in power systems analysis it has been long 

established that harmonics are important to the understanding of what is taking place on the power 

system.  

 

Given that the STFT produces results in a wide frequency spectrum and power system analysis is based 

on harmonics of the fundamental frequency there is a need for a way to convert FFT results into harmonic 

components. A filter-bank is used to do this conversion. The filter-bank is a function designed to extract 

the harmonic frequencies from the spectrogram image thereby reducing the number of rows in the 

spectrogram and focusing on the most relevant power system information.  

 

Each row of the STFT image represents a particular frequency, the row is multiplied by the corresponding 

frequency column of the filter-bank. Rows of the spectrogram that do not correspond with the center 
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frequency of a filter get multiplied by value less than one and in many cases by value of zero. Frequency 

rows of the STFT image that correspond to a center frequency in the filter-bank get multiplied by a value 

of one. The results get added together to create a new row for spectrogram that corresponds to each filter 

in the filter-bank. This results in a spectrogram with fewer rows but highlights the most relevant 

information. To better illustrate the point in the function of the filter bank see Figure 50. This approach is 

advantageous when processing the spectrograms using a Convolutional Neural Network (CNN).  

 
Figure 2 The Behavior of the Filter-Bank 

1.2 SIGNAL DATA NORMALIZATION 

When performing power systems analysis on waveforms there are two types of signals used, namely 

voltage and current signals. Both voltage and current have three phases. The amplitude of the voltage 

signals have an order of magnitude of tens of thousands of volts (10^4 volts) or hundreds of thousands of 

volts (10^5 volts) depending on whether the voltage is for distribution or transmission. The amplitude of 

the current signal may be on the order of tens of amps (10s amps) for load currents to two-digit thousands 

of amps (10^4 amps) for fault currents. 

 

There is enough difference between voltage magnitude, load current magnitude and fault current 

magnitude that necessitates some compensation so that the load current signal is of a comparable 

magnitude to the voltage signal. Therefore, the waveform data needs to be scaled, or normalized, so as to 

make the voltage and current waveforms have comparable scales. 

 

1.3 MERGING THE VOLTAGE AND CURRENT SPECTROGRAMS 

The Voltage spectrograms were combined with the corresponding phase of the Flipped Current 

spectrograms into single spectrogram images where voltage and current are separated by a column of 

zeros. The current was put on the left and the voltage was put on the right as illustrated in Figure 61. The 

output was saved to a 3-dimensional array with spectrograms for each phase along the third dimension.  

 

In the convolution process, the new pixel of the convolved image is the dot product of the CNN kernel 

with the part of the original image that is of the same size as the kernel. Depending on how the kernel 

and/or the CNN is set up the edges of the image include the dot product with in some cases padding 
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values (zeros) that surround the image. Therefore, the edges of the image include convolution with zero 

padding which washes out information contained at the edge of the image. Combining the voltage and 

current into single images in this way keeps the most important information in the center of the image 

thereby reducing or eliminating the washout effect. Moving the important information to the center of the 

image ultimately improves the results of the CNN. 

 

 
Figure 3 Combined Spectrograms of Voltage and Flipped Current 

1.4 LOGARITHM 

The spectrograms were processed by applying a logarithm. Taking a log of small numbers can lead to 

roundoff error. Therefore, the features were scaled using a small offset then taking the log. This provides 

the data with a smoother distribution and accentuates the most important information. 

1.5 CONFIGURE AND TRAIN THE CONVOLUTIONAL NEURAL NETWORK (CNN) 

At this point the spectrogram images were passed through the CNN for training. The structure of the 

neural network is illustrated in Figure 64. 

 
Figure 4 Neural Network Structure 

The training options for the neural network include the Adam optimizer, with 25 max Epochs, a Mini-

batch size of 128, and an Initial Learn Rate of 3e-4.   
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2. BACKGROUND AND CONTEXT 

ORNL led the development of the DOE Roadmap of 

Protective Relaying for the Future which started with a 

White Paper “Future State of Protecting Relaying” which 

later went through a peer-review comprised of 70 utility 

and industry participants that identified protection issues 

that need to be addressed in the electric utility industry. The 

white paper and peer-review culminated in a protective 

relaying Roadmap that included timeline and strategies for 

developing tools and equipment to address protection needs 

for the future. The roadmap included Protective Relaying 

Challenges including: 

Transmission and Generation 

• Risk of settings, configuration errors 

• Adequate post-fault analysis 

• Aging protection infrastructure 

• Workforce development 

• Understanding the many settings possible in a 

protective relay 

• Communications performance, bandwidth and 

speed 

• Accurate fault detection and localization 

• Advanced sensor integration 

• Lack of negative sequence components with DER adversely impacts directional relaying 

Distribution 

• Adaptive protection for different modes of operation, flexible configuration 

• High impedance fault detection 

• Changing communications infrastructure 

• Model coordination, data management 

• DER, bidirectional power flow 

Microgrid 

• Coordination of distributed and central intelligence 

• Interoperability, standards for legacy and new inverters 

• Protection schemes for dynamic systems 

Some work in the industry has investigated phase identification [1] [2] [3]. There was not a lot found in 

the literature where voltage and current waveform data is being processed outside of phasor-

measurement-unit (PMU) data. This may be partially due to the relative lack of readily available data for 

research.  Some techniques have been developed that use contextual information [4] [5] such as weather, 

affected phase(s), season, event time, and interrupting device. Other techniques use extracted features 

from waveform data [6] [7] such as the derivative of current and voltage signal, energy, amplitude, 

correlation coefficient, etc. Self-recoverability, zero current time, degree of distortion, transition time and 

waveform randomness, are extracted from the recorded waveforms in [8], and used as the input to a fuzzy 

inference. 

Roadmap of Protective 
Relaying for the Future

July 2019
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PMU data does not provide sufficient detail of the waveforms the low 60Hz sample rate (1 sample per 

cycle). Using waveforms as a direct source to analyze system events requires higher resolution than PMU 

data provides. High-resolution event recordings are highlighted by [9] and has been implemented in some 

power systems [10]. Point-on-wave (POW) data, features a sample rate of 1 kHz or higher. POW data 

provides more detail in the waveforms. 

2.1 AI/ML FOR PROTECTION AND THE ADAPTIVE RELAY 

The broad value of the work was in waveform processing by allowing for the advancement of protection 

for the power grid. Ultimately, plug and play protection and self-healing on the power system was the 

goal. The work aimed to eliminate engineering studies required to find protection settings that protect the 

power system equipment and the public.  

 

Voltage and current waveform data were fed into NNs. These NNs reduce the data to actionable 

information. The illustration and brief definitions below are intended to provide some high-level clarity 

into the terminology. 

• Artificial Intelligence (AI): A characteristic 

of a machine or software application that 

allows for mimicry of human behavior and 

displays decision-making capabilities. 

• Machine Learning (ML): A subset of AI, 

ML is the process by which AI is 

incorporated into a machine or software 

package. This process specifically involves 

teaching how to learn from previously-

encountered data-sets. 

• Neural Network (NN): An extension of ML involving learning highly complex, non-linear 

functions to perform regression and/or classification tasks 

• Artificial Neural Network (ANN): Often used for regression and classification problems1 

• Convolutional Neural Network (CNN): Often used for image processing, CNNs employ the 

idea of “convolution” from signal processing to extract relevant features from localized regions in 

the input data set. 

• Recurrent Neural Network (RNN): RNNs use “hidden nodes and layers” to learn temporal 

features in a data set and are typically best suited for time-series learning. 

Today, protection engineers choose protection settings that define protection curves on a Time-Current 

Curve (TCC) (see 

Figure 5). This approach works for radial circuits with strong utility sources. Long circuits may exhibit 

low available fault current at the end of the line.2 Additionally,  modern distribution systems with 

Distributed Energy Resources (DER) such as wind, solar and batteries are becoming more prevalant. In 

these and other contexts, the conventional approaches to protection are facing new challenges. The 

motivation for using machine learning in protection was to investigate possible alternatives to 

conventional protection curves that are used today.  

 
1 In this context ANNs are referring to fully connected neural networks which are distinct from CNNs, RNNs and 
other structures.  
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Figure 5 Evolution of Protection with Waveforms and Waveform Signatures 

The machine learning work started under the Microgrid3 project funding pertains to the concept of an 

Adaptive Relay (AR). The work investigated the potential of incorporating machine learning and artificial 

intelligence for functions that would be helpful in the AR. ORNL was in partnership with Sandia National 

Lab.  

 
Figure 6 Power System Waveform Event Capture 

 
3 Travis Smith was the PI for the overall Microgrid Adaptive Relay work 
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Power system waveform data such as that in Figure 6 was to be processed using ML. The voltage and 

current waveform data are used for input into a NN. The NN reduces the input data to actionable 

information (see Figure 7). Actionable information may include fault detection/classification, microgrid 

protection, etc. 

 

Information that can be derived from waveform data includes (but is not limited to): 

 

• Power factor 

• Direction of power/current 

• Unfiltered/filter the waveforms 

• Instantaneous V, I, Z, P, Q, S 

• RMS V, I, Z, P, Q, S  

• Symmetrical components 

• Clark transforms 

• Park transforms 

• Harmonics THD V, I 

• Harmonics individual V, I 

• SAG 

• Swell 

• LG fault 

• LL fault 

• LLG fault 

• LLL (three phase) fault 

• Capacitor ringing 

• Switching (closes/opens) 

• Min, Max, Avg 

• Voltage present 

• Ride through  

• Electrical distance to a fault 

The above is not an exhaustive list but serves as a sample of things that waveform data can be used for. 

 

 
Figure 7 Waveform to Neural Network to Actionable Information 

The training of the neural networks can take hours or days on a conventional computer for each network 

structure investigated. An NVIDIA DGX machine specifically designed and built for artificial 

intelligence training has been set up at ORNL. The machine is configured for optimal use in training the 

algorithms being investigated.  

 

One of the tasks was to investigate if machine learning could be used to identify which circuit breaker 

operated (opened/closed) based on the non-simultaneity signature of the circuit breaker. The term “non-

simultaneity” refers to the slight timing difference between when each 

pole of the 3-phase circuit breaker opening (see Figure 8).  
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Figure 8 Breaker Non-Simultaneity 

To analyze non-simultaneity, the simpler task of fault classification was used as a starting point. In fault 

classification, a dataset of simulated faults was created for the project (AG, BG, CG, AB, BC, AC, ABC, 

ABG, BCG, ACG and ABC where G is “Ground” and A, B, C are phase labels). The initial results were 

around 14% accuracy (see Figure 9). With some modifications to the structure of the NN (see section 5 

below), the accuracy increased to >99% with the simulated data (see Figure 10).  

 
Figure 9 Early Results of Neural Net. for Waveform Classification 

 
Figure 10 Improved Results of Neural Net. for Waveform Classification 
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The work progressed to the non-simultaneity task. A different NN structure was developed for the task 

which achieved accuracy of >85% if looking at the waveform data from the recloser of interest. The 

investigation exposed how looking at the waveform data from the substation rather than waveform data 

from the recloser of interest resulted in lower accuracy. This is because the waveforms, obtained from the 

view of the substation, get washed out the further the waveform travels which was not initially 

considered. This is due to the filtering effects of the resistive, inductive, and capacitive effects of the 

lines. 

 

 
Figure 11 Switching Waveform at Station vs at Recloser (x-axis: time, y-axis: signal amplitude) 

The washout effect can be seen in Figure 11. The grey, blue and light blue curves are the waveforms at 

the recloser and the green, yellow and orange waveforms are the same event at the substation, 

respectively. At the recloser the “step” shapes in the waveforms are sharp and clear. At the substation, the 

waveforms are washed out. One reason for the difference is the amplitude of the load at different points of 

the circuit, but this does not explain the loss of “step” shape in the waveform.  

2.2 HOW IS CLASSIFICATION PERFORMED TODAY? 

EPB of Chattanooga is a partner utility with ORNL. EPB has an extensive deployment of S&C 

Intellirupters that are recording event captures that consist of voltage and current waveforms. They have 

been developing tools to help investigate the event capture waveforms. The concept that EPB is working 

on is something they call “speed of thought”. The idea is to narrow down what the event might be 

sufficiently for an engineer or operator to quickly determine for themselves how to classify the event.  

 

Today, individual tests are run to identify various system conditions/events. Each test gives a result of 

pass, fail, yes, no, true or false. There is no conclusion other than it may be one system condition/event or 

another based on a test having a true, yes or pass value. Figure 12 shows a set of tests and results for a 

single event to illustrate the point.  
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Figure 12 Tests and Results for a Single Event Waveform 

The tests are a tremendous improvement over what was done in the past (often nothing). In the past there 

were rarely waveforms to analyze and thus engineers did not rely on waveforms to try to identify events. 

The utility often did not worry about things unless they received a complaint from a customer. Once a 

complaint was registered, then one of the more savvy and technical engineers would place a recording 

power quality meter to try to capture some events (waveforms) to further analyze. These were typically 

one-off investigations.  

 

Many modern reclosers and circuit breakers have microprocessor relays that record waveforms of system 

events. In some cases, utilities may record a half-a-dozen event captures for every event. This is 

thousands of events per year. So, the algorithms illustrated in Figure 12 are a large leap forward from 

where the industry was 10-20 years ago. With that said, the industry will need faster, more automated, 

more conclusive, and easier to use systems going forward that can process massive amounts of event 

recordings without extensive input/support from power system engineers.  

 

Several techniques for fault classification have been developed such as [11] [12]: 

• Wavelet approach 

• Artificial neural network approach 

• Fuzzy logic approach 

• Neuro-fuzzy technique 

• Wavelet and ANN technique 

• Wavelet and fuzzy-logic technique 

• Wavelet and neuro-fuzzy technique 

• Support vector machine 

• Genetic algorithm 

• DWT-ELM approach 

• Theory and FPGA-based 

implementation 

• GSM technique 

• PMU-based protection scheme 

• Decision tree-based method 

• Multi-information measurements 

• Fast estimation of phasor components 

• PCA based framework 

• Pilot scheme 

• Functional analysis and computational 

intelligence 

• Euclidean distance-based function 

• Pattern recognition approach 

• Comparison and conclusion 

Most of these techniques were developed with protection in mind. Many of them have been deployed in 

commercial software and/or equipment, but few (if any) of these techniques fit for general waveform 

classification such as identifying the cause of the fault etc. Spectrograms have been used as well as CNN 

as in [13]. The notable contributions of this work include: 

• Use of spectrograms on combined voltage and current waveforms for three phases 

• Use of a power system filter-bank to concentrate on power system harmonic information 
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• Waveform signal normalization for the voltage and current waveforms 

• Processing the combined spectrograms by applying a logarithm 

2.3 DARKNET MACHINE LEARNING OF POWER SYSTEM WAVEFORM SIGNATURES 

The processing of power system waveforms using machine learning moved to the Darknet project. Under 

Darknet the focus was expanded beyond protection to include any system events or anomalies captured in 

waveforms.  

 

The previous protection neural network investigations confirmed that unique neural networks could be 

trained to identify faults and other system protection events. However, if time-series waveform data 

combined with Recurrent Neural Networks (RNN) were used, then it would necessitate a unique NN for 

each event type.  

 

The lesson learned from the previous tests for waveform processing and the protection neural network 

investigations was that unique code to identify individual system conditions would quickly become 

cumbersome and infeasible in the long term with respect to commercially deployable solutions. 

Therefore, a solution that could be adapted to a wide variety of system events is desirable. For example: 

• Switching, 

• Reach,  

• Reclosing,  

• Harmonics,  

• Motor starting,  

• Phase unbalance,  

• Capacitor switching,  

• LTC/Regulator tap changes,  

• Cold transfers (drop and pick),  

• Hot transfers,  

• Inrush/transformer energization,  

• etc 

From the perspective of commercially viable solutions, it is important to find a universal NN structure 

(deep learning algorithm) that works for a wide variety of system event types.  

 

2.4 POWER SYSTEM WAVEFORM PROCESSING 

The fields of audio engineering, speech and audio processing use spectrograms fed into CNNs to perform 

tasks such as word recognition, speaker recognition, and cleaning noise from the signal of interest. These 

are all examples that have direct equivalents in power system waveforms and waveform “signatures”.  

 

Audio signals are very similar to power system signals other than the fact that the frequency of audio 

signals tends to be quite high where is the frequency of power system waveforms tend to be quite low. 

Additionally, audio waveforms are often mono signals which result in a single waveform, whereas power 

system waveform data exists in three phases of current data and three phases of voltage data, yielding six 

waveforms altogether. 

 

In audio signal processing, the audio waveform data is converted to an image using spectrograms [14], 

[15]. Spectrograms are plots of short time Fourier transforms. Short time Fourier transforms are time 

sampled Fourier transforms of waveform data. In other words, a Fourier transform is performed on a 

snippet of waveform data (a time step). The next snippet of waveform data is also converted to a Fourier 

transform and so forth and so on until the entire waveform is converted to samples of Fourier transforms. 

Each Fourier transform results in a harmonic spectrum of intensities for each harmonic frequency that 

exists within that snippet.  
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Each of the snippets has a harmonic spectrum associated with it that describes all the frequency 

components of that snippet. The frequency spectrum of each snippet is horizontally stacked next to each 

other for all snippets of the overall waveform. This creates a two-dimensional array of data where each 

column represents a snippet of time within the waveform and each row represents a harmonic component 

(see Figure 13). 

 

 
Figure 13 Spectrogram of a Waveform 

The array of values can be interpreted as an image where at or near the bottom of the image are the low 

frequency values and the of the top the image are the high-frequency values of the harmonic components 

for each time step (see Figure 14). 

 

This image of the Short Time Fourier transform can be passed into a CNN. In the case of power system 

data some additional modification of the data is required before passing it to a CNN for training (see 

Figure 15).  

 
Figure 14 Convert Power System Waveform to a Spectrogram Image Similar to Audio Processing 
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Figure 15 Pass the Spectrogram Image Through a Convolutional Neural Network to Extract Actionable Information 

A waveform signature could be treated as a spoken word like “YES” or “UP”. No two people produce the 

exact same waveform when speaking each of these words, but the algorithm can still distinguish the word 

regardless of the speaker. No two circuits will produce the exact same waveform for a given fault type 

(AG for example), but the NN can be trained to classify the fault type regardless of the circuit or location 

on the circuit.  

3. EVENT WAVEFORM DATA 

A Signature Library is in development to house various system events for use in training NN algorithms 

conceptually similar to ImageNet [16], but for power system event waveform files. The data currently 

includes simulated events, motor starts and breaker pole non-simultaneity events. Field data is being 

collected and used from distribution events recorded by EPB of Chattanooga [10] and from the 

EPRI/DOE [17] event library.  

 

The DOE/EPRI National Database Repository of Power System Events (https://pqmon.epri.com) contains 

approximately 300 event recordings with event type classifications such as tree, weather, equipment, etc. 

(Figure 16). Each event recording includes event files that include (Figure 17): images of waveforms and 

raw datafiles in various formats. Each event also includes event properties with more detail (Figure 18) 

https://pqmon.epri.com/
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Figure 16 DOE/EPRI National Database Repository of Power System Events [17] 

 
Figure 17 DOE/EPRI Event Files [17] 

 

 
Figure 18 DOE/EPRI Event Properties [17] 
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3.1 SIMULATED EVENT FILES 

EPB Chattanooga provided a circuit model of one of their distribution circuits in CYMEdist format 

(Figure 19). ORNL4 converted the EPB circuit model from CYMEdist format into a MATLAB/Simulink 

model5. The Simulink model was augmented to simulate motor starts of various sizes and types and save 

waveform files of the motor starting events6. The augmented model was further modified7 to simulate 

several system events such as faults (phase-to-ground, phase-to-phase, phase-to-phase-to-ground, and 

three-phase).  

 
Figure 19 Distribution Circuit - Basis for Simulated System Events 

Several event files were created over 2019, 2020 and 2021 including motor start, bolted fault events, 

breaker non-simultaneity, and current transformer saturation. The files were labeled in different ways 

depending on the project that the files were intended for. Some files were labeled at a file level while 

others included relevant labeling at each timestep in the event recording. Many of the simulated event 

files were prepared to be loaded into the Signature Library that is under development at ORNL. 

 
Figure 20 MATLAB/Simulink Model of Distribution Circuit 

 
4 Oak Ridge National Laboratory (ORNL) 
5 Mike Marshall and Neil Sheppard, of ORNL, converted the original CYMEdist model to MATLAB/Simulink model 
6 Emilio Piesciorovsky, of ORNL, augmented the MATLAB/Simulink model with motors. 
7 Isabelle Snyder, of ORNL, augmented the MATLAB/Simulink model to simulate a variety of system events. 
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3.2 EPB EVENT DATA 

Under a Non-Disclosure Agreement EPB Chattanooga provided nine months of event capture waveforms 

from across their system. As part of a federal grant EPB installed many S&C Electric Company 

IntelliRupter® reclosing devices across their system with 1000 foot spacing between the reclosing 

devices on distribution circuits. All the IntelliRupter® reclosing devices communicate back to the control 

center over fiber-optic communication system. Each of the reclosing devices has a microprocessor-based 

relay that is configured to capture and record waveforms for system events (see Figure 21).  

• Each event includes waveform capture data in the COMTRADE format 

• Each event waveform data is passed through a series of tests to attempt to classify the event. 

 
Figure 21 Sample Listing of Waveform Event Captures 

Utilities maintain outage records in order to calculate reliability metrics and report to the state public 

utility commission. The outage records are often maintained in Outage Management Systems (OMS). The 

outage records include information that is useful in cross-referencing with waveform event captures such 

as: Date/Time, Cause Code, and Circuit & Station (see Figure 22).  

 
Figure 22 Sample Listing of Outage Management System Data 

SQL Queries were constructed to cross-reference the OMS data with the descriptive metadata of the 

waveform captures provided by EPB. The queries resulted in selecting the waveforms that have 

corresponding event cause codes in the OMS records. This narrowed down the total collection of event 

waveforms to those with verifiable cause codes. This set of labeled data is used for developing, training, 

and testing of the various machine learning algorithms.  
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4. PREPROCESSING WAVEFORM DATA 

Several techniques exist for preprocessing waveform or RMS data. The techniques investigated for the 

previous protection work include symmetrical components, Clark/Park transform, cycle to cycle 

difference, RMS magnitude, Fourier transform. These techniques among others were considered and 

compared as part of the initial investigation into preprocessing the waveform data before sending it into a 

neural network. The solutions were programmed into the MATLAB/Simulink model illustrated in Figure 

23. 

 
Figure 23 MATLAB/Simulink Model for Preprocessing Waveform Data 

Many of these techniques such as symmetrical components are frequently used in power system 

protection and analysis. The conclusion that was drawn from these techniques is that there is a time cost 

in the form of a calculation delay (see Figure 24). The time delay is not related to the computation time 

but rather in waiting for the data of all three phases that is required. For example, if doing a cycle-to-cycle 

magnitude difference calculation then a full cycle must pass in order to perform the calculation. In the 

case of symmetrical components two thirds of a cycle must pass in order to perform asymmetrical 

components calculation.  
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Figure 24 Preprocessing of Waveform (blue) with Symmetrical Components Output (red) (x-axis: time, y-axis: signal amplitude) 

One conclusion reached in the earlier protection work is that it is possible to get good results from a Long 

Short-Term Memory (LSTM) NN in classifying the event without preprocessing the waveform data. 

Another conclusion reached in the protection work is that a different LSTM neural network structure was 

required for each system condition that was of interest. One neural network structure was required for 

fault classification and a different neural network structure was required for CT saturation. In learning 

that different neural network structures are required for different problems it became apparent that a 

LSTM neural network approach could ultimately require several different neural networks for all the 

different system conditions of interest in power systems. Therefore, a generalized neural network 

structure that could be trained on a wide variety of power system conditions such as faults, motor starts 

and harmonics, etc. is desirable for commercially deployable solutions.  

 

5. SEQUENCE-TO-SEQUENCE NEURAL NETWORKS 

Sequence-to-sequence (S2S) neural networks were investigated as part of the initial development of 

neural networks for power system waveform data. Sequence to sequence refers to a determination of the 

state of the circuit at each time step of the data file. This is in contrast to sequence classification where 

there is a single determination for the entire data file. The investigation started with a MATLAB example 

problem that shows how to classify each time step of the sequence using a LSTM network on a data set of 

human body movement [18]. 

5.1 LSTM 

LSTM was the technique chosen for the sequence-to-sequence neural network. Several other structures 

were attempted such as temporal convolutional neural networks (TCN), 1-Dimensional Convolutional 

Neural Network (1-D CNN) but the best results were achieved using LSTM. 
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5.2 TWO-LAYER LSTM 

To get greater depth in the memory of the LSTM, two layers of LSTM were stacked in the network 

architecture (see Figure 25). This structure provided the highest accuracy and classifying the fault type. 

The two-layer LSTM was also used for breaker identification using pole non-simultaneity. 

 

 
Figure 25 Two-Layer LSTM 

6. DELAY ERROR 

In protection and other time sensitive problems, it is imperative to rapidly recognize a fault condition 

regardless of the technique used. If machine learning is to be used for protection purposes, then the nature 

of fault events requires correct identification of the event but correct identification is just as important as 

how long the correct identification takes. machine learning often uses a Confusion Matrix (CM) to 

graphically display the accuracy of a machine learning algorithm as shown in Figure 26.  

 

The CM is a common tool used to identify accuracy of classification systems. Counts of accurate and 

inaccurate classification of each label are identified in a matrix so as to highlight the accuracy of each 

label. However, the CM does not provide any information concerning the amount of time on average the 

correct classification took. If a Machine Learning Algorithm (MLA) takes longer to identify a fault than 

the time it takes for the equipment that it is protecting to be damaged, then a correct fault identification by 

the MLA is of little use.  

 

Therefore, a new metric to quantify the accuracy and speed of each algorithm had to be developed called 

Delay-Error (DE). DE is a technique that is helpful in presenting how effective an MLA is in identifying 

protection related events and how quickly the algorithm correctly categorizes the events (see Figure 27). 
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Figure 26 Confusion Matrix of Machine Learning Algorithm 

 
Figure 27 Delay-Error Table (each column represents a different classification label) 

The DE calculates the number of time steps between the start of the event of interest and when the MLA 

recognizes that the event has started. It does this for each event file and every category of label within the 

test data set. To accomplish this, a S2S neural network is used to produce labeled output for each timestep 

of the output. The labels of each timestep of the input test data is compared to the labels of the output of 

the neural network. The number of timesteps between the start of the event in the labels of input test data 

to the start of the event in the labels of output test data are counted. The count of the difference is the DE 

for the test file.  

 

The results are put into a table that shows columns for each label type or event type (see Figure 28). Each 

row of each column represents a unique test file. The cell value on each row displays the DE, the number 

of time steps required for the MLA to identify event. If the MLA fails to identify the event entirely the 

total number of timestamps in the event file is displayed. Figure 28 illustrates that several events (in the 

red boxes) were not correctly classified.  
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Figure 28 Correct vs. Incorrect Event Identification in Delay-Error Table 

The number of rows in the table represents the maximum number of files for any particular event type 

(columns). If there are fewer event files for a particular event type than the maximum number of files for 

any particular event type, then the cells for the higher count rows are occupied by a “NaN” to indicate that 

there are no more files for that particular event type (column). 

 

The total time that for correct classification for each file can be calculated by dividing the number of 

timesteps in a particular cell by the sample rate in the data. Figure 28 illustrates that many of the events 

(in the blue box) were correctly identified in less than one cycle (33 timesteps/cycle).  

6.1 SUMMARY STATISTICS 

Another script ingests the data from DE to calculate summary statistics on the DE results. Statistics 

include things like the average accuracy, average time for correct classification (see Figure 29), average 

overall time (accurate and error). Statistics are presented by event type (column) as in Figure 30. amount 

of time for each event type and the average time overall which provides measure of accuracy in time.   

 

 
Figure 29 Delay-Error Summary Statistics (Data Sample Rate vs NN Structure) 

The statistics are useful for troubleshooting and analysis. Reporting statistics in different ways helps to 

highlight different aspects of the test data and results in order to help identify strengths and weaknesses of 

different neural network structures and effectiveness on different categories. The summary statistics 

sometimes help identify errors in the neural network structures and sometimes errors in the test or train 

data.  

avg 67 A B C D

samp/sec samp/cyc 128 256 512 1024 2048

1 20000 333.3 0.06 0.06 0.08 0.08 0.13

2 10000 166.7 0.05 0.05 0.07 0.07 0.12

3 6667 111.1 0.04 0.05 0.03 0.08 0.06

4 5000 83.3 0.04 0.04 0.03 0.06 0.07

5 4000 66.7 0.04 0.05 0.05 0.07 0.07
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Figure 30 Delay-Error Summary Statistics (Event Type vs. NN Structure) 

6.2 DELAY ERROR VERSUS CONFUSION MATRIX 

Both CM and DE are useful for understanding the accuracy of an MLA in identifying events. CM is very 

useful in providing a matrix that is easy to see which events are classifying accurately in which events are 

not. The CM is very visual and its display of that accuracy along with counts of how many events are 

misclassified.  

 

The DE is useful in understanding the amount of time required to correctly identify each event. The time 

is very important in the context of protection systems and other time sensitive operations. Protection 

systems rely on correctly identifying a fault or other event in a short period of time in order to clear the 

fault from the system and protect system equipment and/or personnel. The faster an event can be correctly 

identified the less time there will be for the fault to continue to burn. This is particularly important in the 

context of high-voltage transmission systems where the total clearing time is often on the order of single 

digit cycles. 

 

  

-1 -2 -3 -4 -5 -6 -7 -8 1 2 3 4 5 6 7 8 Overall

DS1_128 0% 73% 29% 78% 75% 20% 0% 0% 29% 2% 88% 98% 59% 61% 39% 7% 41%

DS2_128 8% 25% 81% 63% 47% 5% 0% 0% 20% 25% 86% 98% 46% 14% 66% 14% 38%

DS3_128 51% 61% 61% 36% 90% 19% 19% 12% 53% 68% 85% 98% 36% 41% 64% 29% 51%

DS4_128 47% 53% 83% 25% 86% 47% 37% 37% 59% 53% 88% 49% 69% 86% 51% 29% 56%

DS5_128 53% 64% 80% 80% 68% 47% 42% 27% 49% 41% 88% 98% 54% 98% 56% 29% 61%

DS1_256A 22% 81% 5% 44% 63% 83% 0% 0% 36% 3% 86% 53% 49% 22% 71% 17% 40%

DS2_256A 20% 56% 46% 5% 90% 0% 0% 0% 10% 39% 69% 98% 59% 20% 46% 12% 36%

DS3_256A 61% 42% 86% 80% 51% 19% 19% 14% 59% 51% 88% 98% 34% 59% 69% 31% 54%

DS4_256A 54% 76% 56% 51% 80% 42% 37% 39% 42% 51% 78% 98% 37% 97% 39% 29% 57%

DS5_256A 71% 78% 58% 37% 85% 53% 42% 25% 56% 44% 88% 98% 54% 95% 54% 37% 61%

DS1_512B 76% 90% 83% 0% 92% 0% 3% 0% 47% 36% 49% 85% 42% 97% 71% 54% 52%

DS2_512B 80% 90% 0% 0% 92% 2% 0% 0% 24% 15% 73% 78% 24% 75% 71% 2% 39%

DS3_512B 27% 41% 88% 31% 88% 19% 19% 12% 66% 58% 80% 59% 49% 75% 64% 29% 50%

DS4_512B 47% 90% 31% 44% 78% 47% 39% 41% 49% 58% 88% 49% 69% 81% 63% 34% 57%

DS5_512B 42% 76% 47% 19% 71% 54% 41% 25% 71% 41% 88% 97% 53% 98% 68% 31% 58%

DS1_1024C 76% 90% 83% 0% 92% 0% 3% 0% 47% 36% 49% 85% 42% 97% 71% 54% 52%

DS2_1024C 90% 90% 29% 0% 83% 24% 0% 0% 78% 66% 53% 95% 17% 56% 71% 14% 48%

DS3_1024C 78% 86% 61% 34% 90% 32% 19% 8% 66% 56% 51% 98% 31% 98% 64% 25% 56%

DS4_1024C 83% 90% 29% 22% 92% 64% 36% 36% 73% 61% 56% 95% 37% 85% 69% 27% 60%

DS5_1024C 93% 90% 46% 36% 92% 66% 42% 29% 75% 64% 68% 95% 54% 85% 51% 32% 64%

DS1_2048D 80% 86% 88% 10% 64% 81% 78% 75% 76% 59% 14% 76% 24% 76% 58% 66% 63%

DS2_2048D 66% 86% 88% 49% 61% 8% 42% 2% 75% 47% 10% 49% 27% 42% 47% 7% 44%

DS3_2048D 93% 90% 49% 39% 78% 22% 17% 7% 68% 64% 37% 42% 47% 98% 69% 25% 53%

DS4_2048D 88% 90% 69% 44% 64% 59% 8% 37% 80% 71% 85% 97% 41% 97% 37% 22% 62%

DS5_2048D 97% 90% 63% 53% 71% 47% 32% 32% 75% 69% 64% 76% 69% 98% 44% 53% 65%

Med High Med Low High Low Low Low Med Med High High Low High Med Low

-8 8

Accuracy
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7. SPECTROGRAM BASED CNN FOR POWER SYSTEM WAVEFORMS 

Audio Signals tend to be in the kilohertz frequency range whereas power systems typically have 60 Hz 

signals. Audio signals are often (not always) a single data stream. Power systems signals are typically six 

data streams (three voltage and three current). Otherwise, power systems signals (Figure 31 Single-Phase 

Power System Current Waveform) are very similar to audio signals (Figure 32 Audio Waveform of the 

Word YES). 

 
Figure 31 Single-Phase Power System Current Waveform (horizontal axis is time, vertical axis is current amplitude) 

 
Figure 32 Audio Waveform of the Word YES (x-axis is time, y-axis is audio signal amplitude) 

To address the need for a commercially viable solution that can classify waveform data, energies were 

directed to develop a universal NN structure (deep learning algorithm) that works for a wide variety of 

system event types. The structure that showed most promise was one that included the use of 

spectrograms. The technique has shown positive results in audio engineering, particularly with respect to 

speech recognition. A MATLAB example problem illustrates some code in theory of how to use 

spectrograms in speech command recognition [19]. A YouTube course titled “Audio Signal Processing 

for Machine Learning”, was referenced to gain greater insight into how spectrograms in conjunction with 

CNN are used to process audio signals [14]. Further depth of understanding was gained from the book 

titled “Fundamentals of Music Processing”, by Meinard Müller [15]. 



 

14 

7.1 BASIC SPECTROGRAM 

A basic spectrogram function is available within MATLAB.  

 
spectrogram(C80k,window,noverlap, freqloc) 

 

When the spectrogram function8 is performed on the fault waveform in Figure 31 a spectrogram image is 

produced as illustrated in Figure 33. Time is on the x-axis and harmonic frequency is on the y-axis. 

Notice at the time of fault initiation (2 on the x-axis) a vertical line appears. This vertical line illustrates 

how a step function includes a wide variety of harmonics including high harmonics. It is also important to 

note the very bottom edge along the x-axis is bright yellow. This is illustrating the low frequency 

components of the waveform including DC and 60 Hz. With respect to 60 Hz, note how the bottom edge 

becomes brighter yellow past the two-index on the x-axis. This is illustrating how the magnitude of the 

fundamental frequency increases because of the fault current. These characteristics will be leveraged in 

the final version of the power system spectrograms described below. 

 
Figure 33 Spectrogram of Fault Current Waveform 

The MATLAB spectrogram function takes x, window, noverlap and nfft as arguments,  

where: 

• X: is the input signal 

o C80k  

 
8 Spectrogram: https://www.mathworks.com/help/signal/ref/spectrogram.html 

https://www.mathworks.com/help/signal/ref/spectrogram.html
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Figure 34 Input Audio Signal (x-axis: time, y-axis: signal amplitude) 

• Window: is used to divide the signal into segments and perform windowing 

o window 

 
Figure 35 Window for the Short-Term Fourier Transform (STFT) (x-axis: time, y-axis: signal amplitude) 

• Noverlap: is the number of samples of overlap between adjoining segments 

o noverlap 

 
Figure 36 Overlapping Windows for the STFT (x-axis: time, y-axis: signal amplitude) 

• Nfft: is the number of sampling points to calculate the discrete Fourier transform 

o freqloc 

o This is a combination of the window width and the sample rate of the data. It is the 

number of samples within the window.  

A Short-Time Fourier Transform (STFT9) is a Fast Fourier Transform (FFT10) of a window (see Figure 

35) of the signal data. After performing the FFT the window is shifted in time. The new window and the 

 
9 MATLAB function stft: https://www.mathworks.com/help/signal/ref/stft.html 
10 MATLAB function fft: https://www.mathworks.com/help/matlab/ref/fft.html 
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previous window may overlap as illustrated in Figure 36. Another FFT is performed on the next window. 

This is repeated across the entire length of the signal. The STFT (see Figure 37) technique is the basis for 

the Spectrogram.  

 
Figure 37 Short-Time Fourier Transform (STFT) 

7.2 WINDOW 

The window length for the PSNN is two cycles. A two-cycle window is long enough to capture the 

beginning of faults. Further, it is long enough to capture the beginning of a motor start which can last 

anywhere from a fraction of a second to thirty seconds.  By keeping the window width narrow (2-cycles) 

it minimizes the number of samples that go into the Fast Fourier Transform (FFT) and thereby the number 

of computations required to calculate the FFT. A two-cycle window width should be appropriate for a 

wide variety of power system events of interest. In future work it may be worthwhile to investigate 

different window widths for different types of power system events.  

 

With respect to the window, recall how the FFT of the spectrogram generates a wide spectrum of 

frequencies at the edge of a step function. This is noticeable in the fault waveform in Figure 31 creating a 

spike in the spectrogram image illustrated in Figure 33. The same thing happens at the edge of a STFT 

Window.  

 
Figure 38 Uncompensated Windowing (x-axis: time, y-axis: signal amplitude) 
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If not compensated for, the spectrogram generated using STFT would show a spike at the edge of every 

window used to break up the signal data as illustrated in Figure 38. The spikes would be misleading when 

trying to interpret the resulting spectrogram. Therefore, the edges of each window must be 

mathematically compensated for. To compensate for the window edge effect a windowing function us 

used as illustrated in Figure 39. The signal data is multiplied by the window function which is zero 

outside the window and approaches zero toward the edges of the window. This eliminates the sharp step 

function at the edge of the window.  

 
Figure 39 Window Function (x-axis: time, y-axis: signal amplitude) 

If the windows join edge to edge, then information could be lost at the edge of each window. Therefore, 

the windows are overlapped as illustrated in Figure 40. This preserves the information at the edges of the 

windows.  

 
Figure 40 Window Function Overlap (x-axis: time, y-axis: signal amplitude) 

There are many different types and shapes of window functions available for use and many of them are 

preprogrammed into MATLAB for use on signal data including:  

• Hann (Hanning) window 

• Hamming window 

• Kaiser window 

• Triangular window 

• Tukey (tapered cosine) window 

• Parzen (de la Vallée Poussin) window 

• Nuttall-defined minimum 4-term Blackman-Harris window 

• Gaussian window 

• Flat top weighted window 

• Chebyshev window 

• Bohman window 

• Minimum four-term Blackman-Harris window 

• Blackman window 
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• Bartlett window 

• Modified Bartlett-Hann window 

The default windowing function in the MATLAB spectrogram function is the Hamming window. Each 

windowing function was checked and qualitatively compared to find the one most suited for the power 

system waveform data. The Parzen windowing function (see Figure 41) was found to give optimal results 

which is consistent with the recommendation made in [20]. 

Similar in concept but separate from window width is datafile length. Datafile length is the amount of 

time in a particular event file. In the case of this study, the datafile length is four seconds. While data files 

may include more than four seconds of data, the most important portion of the fault events are sufficiently 

represented in four seconds. In the case of large motors starting the entire event may be more than 30 

seconds, but a significant portion of the important and descriptive information will mostly be in the first 

four seconds. Therefore, four seconds was chosen for the PSNN described here.  

 
Figure 41 Spectrogram with Parzen Windowing Function 

A function was created to calculate window width in cycles based on sample frequency and power system 

frequency (typically 60 Hz in the USA and 50 Hz in Europe). The name of the function is titled 

“Fcn_PSysSampCycle.mlx” in the functions folder. The function is called in the main body of the code 

and returns a structure variable named “sampCycle” (see page C-14). 

7.3 HOP & OVERLAP 

The overlap between adjacent windows is the amount by which a window overlaps the previous window 

when creating the spectrogram. A closely related concept is that of Hop. Hop is the amount by which the 

window is shifted in time.  

  
Hop = Window – Overlap  (1) 
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Hop and overlap are closely related, one or the other may be used in functions to create spectrograms. In 

the case of the built-in MATLAB spectrogram function, overlap is used to identify shift between 

subsequent windows.  

It is important to ensure that a hop is chosen that minimizes calculation but provides sufficient resolution 

in the time step is appropriate for a wide variety of system conditions of interest. Several different hop 

sizes were qualitatively compared in order to ensure image quality in the resulting spectrograms (Figure 

42, Figure 43, Figure 44, Figure 45).  

 

 
Figure 42 1/8th Cycle Hop 
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Figure 43 1/4th Cycle Hop 

 
Figure 44 1/16th Cycle Hop 
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Figure 45 1/32nd Cycle Hop 

In the case of PSNN 1/32nd of a cycle was chosen as the hop. A hop of 1/32nd of a cycle provides 

sufficient resolution in the data to allow for the use of PSNN for protection purposes. In protection it is 

important to identify a fault event as quickly as possible. Speed is particularly important in the context of 

transmission protection where total clearing time may be 3 cycles which includes relay time, 

communication time and mechanical operation of the breaker. When working with the LSTM neural 

networks it was found that the NN’s could, in many cases, identify a fault event in approximately 3/32nd 

of a cycle. Therefore, a hop of 1/32nd of a cycle was chosen for PSNN in order to achieve similar 

performance. A shorter hop would result in more calculation time with limited additional benefit.  

7.4 DFT POINTS (NFFT) 

A Discrete Fourier Transform (DFT11) of a digital signal in the time domain samples a signal multiple 

times and maps the signal to a range of discrete frequencies in the frequency domain. In power systems 

analysis this is related to the concept of harmonics where continuous-time power system signal is 

transformed (mapped) to integer multiples of the fundamental frequency12 in the frequency domain such 

as: 60 Hz = 1st harmonic, 120 Hz = 2nd harmonic, 180 Hz = 3rd harmonic, 240 Hz = 4th harmonic, and so 

on. 

 

Typically, power system signals are represented in the harmonic components. Signals processed with 

DFT are transformed to a range of frequencies which are not necessarily integer multiples of a power 

system fundamental frequency (60 Hz). In the case of DFT, the user selects an integer number of 

frequencies to map to, which is called NFFT in the case of the spectrogram function in MATLAB is 

 
11 The efficient version of the DFT is the FFT. The MATLAB function is fft: 
https://www.mathworks.com/help/matlab/ref/fft.html 
12 60 Hz in the USA and 50 Hz in other parts of the world such as Europe 

https://www.mathworks.com/help/matlab/ref/fft.html
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called NFFT13 14 15 for Number of DFT points (frequencies). Several values for NFFT were tested and 

qualitatively compared in Figure 46, Figure 47, and Figure 48. There was no observable difference 

between the different selections at this stage. The higher the number of DFT points the greater the 

required computation. Therefore, lower values for DFT points are desirable when possible. However, if 

the number of DFT points is less than the window width then the data is padded with zeros which will 

tend to skew the results.  

 
Figure 46 Default NFFT = 1024 

Balance needs to be found between: 

• window width,  

o wide window increases potential to characterize important parts of the event signal 

o wide window increases calculation time and requirements 

• DFT points,  

o more DFT points increases resolution and precision 

o more DFT points increases calculation time and requirements 

• required precision of the final calculations  

o slow events may not require high precision (i.e. wind & solar variability) 

o fast events will require high precision (transients and protection events) 

The default number of DFT points in the PSNN code is 1024. The value is held in the FFT parameters 

function titled “Fcn_PSysFFTparams” in the variable name is FFTparams.nfft. When the main code runs 

the Fcn_PSysFFTparams function is called from which point FFTparams.nfft is made available to the rest 

 
13 In the MATLAB function spectrogram: nfft — Number of DFT points 
https://www.mathworks.com/help/signal/ref/spectrogram.html 
14 In the MATLAB function stft: FFTLength — Number of DFT points 
https://www.mathworks.com/help/signal/ref/stft.html 
15 In the MATLAB function fft: n — Transform length https://www.mathworks.com/help/matlab/ref/fft.html 

https://www.mathworks.com/help/signal/ref/spectrogram.html
https://www.mathworks.com/help/signal/ref/stft.html
https://www.mathworks.com/help/matlab/ref/fft.html
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of the code. The value can be permanently changed in the Fcn_PSysFFTparams function or can be 

temporarily updated later in the code by updating the value for the FFTparams.nfft variable. 

 
Figure 47 NFFT = 256 

 
Figure 48 NFFT = 512 
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7.5 POWER SYSTEM FILTER-BANK (CHANNELIZER) 

Understanding DFT points is important in understanding the Filter-Bank (Characterizer). As explained in 

section 7.4, the FFT maps to a wide spectrum of frequencies as defined by DFT points. However, in 

power systems analysis it has been long established that harmonics are important to the understanding of 

what is taking place on the power system.  

 

Odd harmonics are most relevant in understanding power system events16. Another, pseudo-harmonic that 

is of great importance is that of the Direct Current (DC) component. The DC component represents zero-

frequency or direct current and is a common occurrence at the beginning of a fault, when motors are 

starting and other key times. The DC component is usually short lived (on the order of single-digit 

cycles), but is very informative when present. At other times Triplen harmonics are most appropriate for 

understanding some system conditions.  

 

Given that the FFT produces results in a wide frequency spectrum and power system analysis is based on 

harmonics of the fundamental frequency there is a need for a way to convert FFT results into harmonic 

components. A filter-bank is used to do this conversion. The filter-bank is a matrix of rows equal to DFT 

points and columns equal to the harmonic frequencies of interest. The filter-bank matrix is used as a filter 

to the spectrogram or STFT matrix and reduce the number of rows in the matrix/image while focusing on 

the most important information for power systems analysis. 

7.5.1 The Filter-Bank 

The filter-bank is a function designed to extract the harmonic frequencies from the spectrogram image 

thereby reducing the number of rows in the spectrogram and focusing on the most relevant power system 

information. Graphically the filter–bank is illustrated in Figure 49. The y-axis is the magnitude at which 

the rows of the spectrogram is multiplied when passed into the filter-bank algorithm. The x-axis 

represents the range of frequencies. Each triangular line represents a separate filter. Each triangular filter 

is centered on a harmonic frequency of interest. The triangle drops from a magnitude of one at the center 

frequency to a value of zero at the center frequency of the next filter triangle. 

 

Each row of the STFT image represents a particular frequency, the row is multiplied by the corresponding 

frequency column of the filter-bank. Rows of the spectrogram that do not correspond with the center 

frequency of a filter get multiplied by value less than one and in many cases by value of zero. Frequency 

rows of the STFT image that correspond to a center frequency in the filter-bank get multiplied by a value 

of one. The results get added together to create a new row for spectrogram that corresponds to each filter 

in the filter-bank. This results in a spectrogram with fewer rows but highlights the most relevant 

information. 

 

To better illustrate the point in the function of the filter bank see Figure 50. The raw spectrogram image is 

depicted on the left side of Figure 50. An illustrative depiction of the filter-bank is shown near the middle 

of Figure 50. The final result, a filtered spectrogram, is depicted on the right side of Figure 50. Take note 

of how higher order frequencies may be eliminated from the data set. Also take note how lower order 

frequencies are concentrated into a reduced number of rows in the spectrogram image. This approach is 

advantageous when processing the spectrograms using a CNN. In audio engineering a Mel Filter-Bank is 

used but is inappropriate for power systems as it is configured for audio signals as opposed to power 

system signals as this Power System Filter-Bank is. 

 
16 note that odd harmonics are the most informative in power system analysis and the even harmonics are typically 
ignored 
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Figure 49 Power System Filter-Bank 

 
Figure 50 The Behavior of the Filter-Bank 
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7.5.2 Harmonics and Sequence Components 

In order to gain a better understanding of harmonics it is worth wile to tie them back to sequence 

components. Foundational understanding is that of the relationship between harmonic order and sequence. 

The three-phase positive sequence components contain three sinusoids 120º from one another. Positive-

sequence (A-B-C) phase rotation is [0, 120, 240] = [0, 120, -120]. Negative-sequence (A-C-B) phase 

rotation is [0, 240, 120] = [0, −120, 120]. Zero-sequence are in phase with each other (e.g., 0, 0, 0). 

 

Harmonic phase sequence can be determined by multiplying the harmonic number h with the positive 

sequence phase rotation [0, 120, 240]. For example:  

• first-harmonic (the fundamental),  

o h = 1, produces 1 x [0, 120, -120] = [0, 120, -120] or [0, -120, 120]  

o which is positive sequence 

• second-harmonic,  

o h = 2, produces 2 x [0, 120, -120] = [0, 240, -240] or [0, −120, 120]  

o which is the negative sequence 

• third-harmonic,  

o h = 3, produces 3 x [0, 120, -120] = [0, —360, 360] or [0, 0, 0°]  

o which is the zero sequence 

Phase sequence for all other harmonic orders can be determined in the same fashion. 

 

 

To that end the relationship of sequence to lower level harmonic order are : 

• Harmonic Order = 1, 7, 13, … are POSITIVE SEQUENCE  

• Harmonic Order = 5, 11, 17, … are NEGATIVE SEQUENCE  

• Harmonic Order = 3, 9, 15, 21 … are ZERO SEQUENCE  

o These are the Triplen Harmonics 

7.5.3 Harmonics Chosen for the Power System Filter-Bank 

Part of the objective of the power system filter–bank is to reduce the number of rows in the spectrogram 

image while still emphasizing the most relevant information concerning power system events. As a 

starting point the filter bank eliminates even numbered harmonics as they are not very helpful in 

analyzing power system data. All odd harmonics are included up to the 15th harmonic. Above the 15th 

harmonic, triplen harmonics are included. Additionally, low-frequencies below 30 Hz are gathered 

together as a DC component. Spectrograms passed through the filter-bank  with all harmonics, odd 

harmonics to the 9th, odd harmonics to the 15th, odd harmonics to the 51th, odd harmonics to the 101th are 

qualitatively compared in Figure 51, Figure 52, Figure 53,  Figure 54, Figure 55, and Figure 56. 

 

The filter–bank function is designed to take as an input the top harmonic of interest which may be the 15th 

(see), the 51st (see) or the 101st harmonic. For many applications the 15th harmonic should be sufficient as 

that is what is typically the cut off for many meters and analysis tools today. 
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Figure 51 Raw (Unfiltered) Spectrogram 

 
Figure 52 All Harmonics 
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Figure 53 Odd Harmonics to the 9th 

 

 
Figure 54 Odd Harmonics to the 15th 
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Figure 55 Odd Harmonics to the 51st 

 

 
Figure 56 Odd Harmonics to the 101st 
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7.6 SIGNAL DATA NORMALIZATION 

When performing power systems analysis on waveforms there are two types of signals used, namely 

voltage and current signals. Both voltage and current have three phases. The amplitude of the voltage 

signals has an order of magnitude of tens of thousands of volts (10^4 volts) or hundreds of thousands of 

volts (10^5 volts) depending on whether the voltage is for distribution or transmission. The amplitude of 

the current signal may be on the order of tens of amps (10s amps) for load currents to single-digit 

thousands of amps (1^3 amps) for fault currents. 

 

There is enough difference between voltage magnitude, load current magnitude and fault current 

magnitude that necessitates some compensation so that the load current signal is of a comparable 

magnitude to the voltage signal. When plotted on the same plot it can be difficult to distinguish voltage 

from current. Figure 57 illustrates how the current signal appears to be zero when plotted against the 

voltage signal. While there are nonzero values for the current signal, they are much smaller than the 

voltage signal values. 

 

The use of spectrograms and the filter-bank is building up to use Convolutional Neural Networks (CNN) 

to process the waveform data. Just as in the visual illustration below the CNN will have difficulty making 

use of the voltage and current signals together when there is significant difference in the order of 

magnitude between them. Therefore, the waveform data needs to be scaled, or normalized, so as to make 

the voltage and current waveforms have comparable scales. 

 
Figure 57 Uncompensated (Non-normalized) Voltage and Current Signals (x-axis: time, y-axis: signal amplitude) 

To normalize the voltage and current waveforms, it is important to note that there are two different scales 

of magnitude in the current waveforms, that of load current and that of fault current. In both power flow 

analysis software and protection analysis a technique is used to normalize voltage and current data, often 

referred to as “Per-Unit” or simply “p.u.”. While the technique employed in the PSNN is inspired by per-

unit, it does not strictly adhere to the per-unit system of normalization. Doing so will sometimes 

exaggerate the scale problem illustrated in Figure 57.  
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The normalization used for PSNN leaves the current unchanged but scales the voltage by: 

 

 𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑂𝑢𝑡 =  𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝐼𝑛 / (𝐵𝑎𝑠𝑒𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗  1𝑒3) / 𝑠𝑞𝑟𝑡(2/3)  (2) 

 

Where the BaseVoltage is the line voltage in kV RMS and Voltage_In is the voltage signal data. Figure 

58 illustrates how the voltage and current waveforms are both visible in the same plots. While both 

voltage and current are notably different in magnitude and all plots of Figure 58, they are similar enough 

to be distinguishable whether it is the load current portion of the signal or the fault current portion of 

signal. 

 
Figure 58 Compensated (Normalized) Voltage and Current Signals (x-axis: time, y-axis: signal amplitude) 

 

7.7 MERGING THE VOLTAGE AND CURRENT SPECTROGRAMS 

The process to this point includes: 

1) Normalize the voltage waveform data using the pseudo-per-unit calculations 

2) Compute Power Spectrograms of the normalized waveform data using the Fcn_PSysSpectIV function 

which leverages PSysFilterBank function (see Figure 59) 

a) For many applications set: 

i) NFFT = 1024 (unless the window width is smaller) 

ii) Top harmonic = 15 (unless higher order harmonics are of interest) 

In the next step the coincident phase voltage spectrograms were merged to the current spectrograms. This 

pulls the voltage and current into a single image for each phase. This is beneficial as the voltage generally 

responds at the same time as the current in the case of faults and other system events. By combining the 

voltage and current into a common spectrogram image the CNN can get the benefit of seeing a full picture 

of what is going on and it reduces the inputs into the CNN which saves on calculation.  
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Figure 59 Spectrograms of Voltage (top row) & Current (bottom row) 

The next step is to flip the current signal spectrograms from left to right (see Figure 60).  

 
Figure 60 Spectrograms of Voltage (top row) & Current (bottom row) where Current is Flipped from Left to Right 

Finally, the Voltage spectrograms were combined with the corresponding phase of the Flipped Current 

spectrograms into single spectrogram images where voltage and current are separated by a column of 

zeros. The current was put on the left and the voltage was put on the right as illustrated in Figure 61. The 

output was saved to a 3-dimensional array with spectrograms for each phase along the third dimension.  

 

In the convolution process, the new pixel of the convolved image is the dot product of the CNN kernel 

with the part of the original image that is of the same size as the kernel. Depending on how the kernel 

and/or the CNN is set up the edges of the image include the dot product within some cases padding values 
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(zeros) that surround the image. Therefore, the edges of the image include convolution with zero padding 

which washes out information contained at the edge of the image. Combining the voltage and current into 

single images in this way keeps the most important information in the center of the image thereby 

reducing or eliminating the washout effect. Moving the important information to the center of the image 

ultimately improves the results of the CNN. 

 

 
Figure 61 Combined Spectrograms of Voltage and Flipped Current 

7.8 LOGARITHM 

The spectrograms were finally processed by applying a logarithm. Taking a log of small numbers can lead 

to roundoff error. Therefore, the features were scaled using a small offset (epsil) then taking the log. This 

provides the data with a smoother distribution and accentuates the most important information to improve 

the performance of the CNN (see Figure 62). 

 

𝑒𝑝𝑠𝑖𝑙 =  1𝑒 − 6 (3) 

𝑋 =  𝑙𝑜𝑔10(𝑋 +  𝑒𝑝𝑠𝑖𝑙)  (4) 
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Figure 62 Results After Application of the Logarithm 

A comparison of the impact of the Logarithm can be seen in Figure 63.  

 
Figure 63 Comparison of Before and After the Application of the Logarithm 

7.9 CONFIGURE AND TRAIN THE CONVOLUTIONAL NEURAL NETWORK (CNN) 

The process to this point includes: 

1) Normalize the voltage waveform data using the pseudo-Per-Unit calculations  

2) Compute Power Spectrograms of the normalized waveform data using the Fcn_PSysSpectIV function 

which leverages PSysFilterBank function (see Figure 59) 

a) For many applications set: 
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i) NFFT = 1024 (unless the window width is smaller)17 

ii) Top harmonic = 15 (unless higher order harmonics are of interest) 

3) Flip the current spectrograms (see Figure 60) 

4) Combine the voltage spectrograms with the flipped current spectrograms (see Figure 61) 

5) Apply the Logarithm function to the combined spectrograms (see (3) 

At this point the spectrogram images were passed through the CNN for training. The structure of the 

neural network is illustrated in Figure 64 (code on page C-8).  

 
Figure 64 Neural Network Structure 

 

The training options for the neural network include the Adam optimizer, with 25 max Epochs, a Mini-

batch size of 128, and an Initial Learn Rate of 3e-4. The training options are outlined in MATLAB code 

in section C-13.  

 

Once training is started, the error drops to near zero and the accuracy goes to near 100% in just a few 

epochs. Additional training beyond the first few epochs pushes the validation accuracy to 100% by the 

time training is complete (see Figure 65). Testing is performed with fresh data that the network has not 

seen. The results of the test show 2 errors out of approximately 1400 test samples equal to 99.86% (see 

Figure 66).  

 

 
17 The sample rate of the dataset is 20,000 samples/sec 
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Figure 65 Training Plot with Accuracy (top) and Error (bottom) 

 
Figure 66 Confusion Matrix of Test Results After Training 

8. WAVEFORM DATA FOR NEURAL NETWORK TRAINING 

In order to fully represent the waveform, including intermediate and higher order harmonics, high sample 

rates are required. The waveform data captured by power quality meters and other modern 

instrumentation typically has sample rates of 3000 to 20,000 samples per second. The PSNN that 

leverages spectrograms and CNN is designed for these high sample rates.  
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Waveform data is becoming increasingly available throughout the industry from power quality meters, 

microprocessor-based relays, event recorders and other intelligent electronic devices (IED). However, at 

this point researchers do not yet have an organized and labeled power system waveform data set to use for 

neural network training. Comparable examples for other industries include: 

• ImageNet: https://image-net.org/ 

• WordNet: https://wordnet.princeton.edu/ 

• FERET: https://www.nist.gov/programs-projects/face-recognition-technology-feret 

• MNIST: http://yann.lecun.com/exdb/mnist/ 

• Among many others.  

The most comprehensive data set for power systems analysis is the PMU data set for FOA 1861 

(https://www.naspi.org/). The FOA 1861 data set is not publicly available yet but is in the process of 

being curated and posted on the web through a public resource. The PMU data is at a sample rate of 30 to 

60 samples per second which is insufficient for detailed waveform representation particularly harmonic 

characteristics. 

 

Given that large and comprehensive publicly available waveform data sets are not yet available to 

researchers, other approaches will need to fill the gap until the data is available. Some data has been 

acquired from EPB of Chattanooga and has been cross referenced with Outage Management System 

(OMS) records which provides for some labeling of the dataset. Other waveforms from EPB are being 

investigated and labeled using scripts developed in-house by EPB to assist in the labeling of other events 

not covered by OMS records. The EPB data set provides a starting point for researchers at ORNL, but is 

proprietary information and cannot be shared with the public.  

 

Another project underway at ORNL is the signature library. The signature library is being developed to 

warehouse collections of power system data such as waveforms and PMU data. The signature library 

project is working with utilities such as EPB and others willing to share sets of sanitized power system 

data. 

 

Other event types not covered by the EPB data set or other available data sets are not yet available such as 

events like: 

• cold load pickup 

• capacitor switching 

• switching transients 

• switching 

• etc. 

While the event waveform captures are being recorded for a wide variety of events throughout the 

industry, at this point many of the events are unlabeled. In other cases, the event waveform captures do 

not exist yet. Until the industry gets to a point where event waveform captures from the field can be used 

for neural network training simulated data will need to fill the gap in the interim. 

 

Simulated data often consists of idealized examples of events and may not include characteristics from 

field conditions. Therefore, simulated data can be used as a starting point, however simulation tools will 

need to be improved as time progresses in order to generate waveforms that more closely reflect field 

conditions. To that end, we propose here a process by which waveforms are simulated and refined. As the 

simulated data is being used field examples are collected. As these field samples are collected, they are 

compared against the simulated waveforms. With understanding gained from this comparative analysis, 

the simulation models are adjusted to create more realistic waveforms. This cycle repeats, allowing for 

https://image-net.org/
https://wordnet.princeton.edu/
https://www.nist.gov/programs-projects/face-recognition-technology-feret
http://yann.lecun.com/exdb/mnist/
https://www.naspi.org/
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new simulated data to be created with the improved simulation tools. The cycle repeats until a point is 

reached at which there is sufficient field data to successfully train the neural networks and simulated data 

can be shelved or used for more rudimentary training purposes (see Figure 67 Data Cycle). 

 

 
Figure 67 Data Cycle 

 

9. FINDINGS AND CONCLUSIONS 

A Power System Neural Network (PSNN) has been developed to use a Convolutional Neural Network 

(CNN) to classify events within waveform data for power system functions such as power system 

protection, power system planning, and power system operations. 

 

The process follows the following procedure: 

1) Normalize the voltage waveform data using the pseudo-Per-Unit calculations  

2) Compute Power Spectrograms of the normalized waveform data using the Fcn_PSysSpectIV function 

which leverages the Power System Filter-Bank in the PSysFilterBank function (see Figure 59) 

a) For many applications set: 

i) NFFT = 1024 (unless the window width is smaller) 

ii) Top harmonic = 15 (unless higher order harmonics are of interest) 

3) Flip the current spectrograms (see Figure 60) 
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4) Combine the voltage spectrograms with the flipped current spectrograms into single spectrogram 

images (see Figure 61) 

5) Apply the Logarithm function to the combined spectrograms (see (3) 

6) Use the spectrogram images as input to a multi-layer CNN (see Figure 64) 

The test results on independent simulated test and validation datasets show greater than 99% accuracy.  

 

Field data needs to be collected, labeled, organized, and curated for further training and testing of the 

PSNN. A major effort in the use of the field data involves developing scripts to isolate the actual fault 

event from the other surrounding nonevent data. Further, work with the industry will require new code 

and considerable effort to manually and programmatically label the field data. Additionally, data for new 

events such as capacitor switching, among others, will need to be simulated and collected from the field. 

 

The next step for this algorithm is to modify it into a sequence-to-sequence classification system. This 

will allow the technique to be used on streaming data which will allow the use of this technique on live 

streaming data such as for protective relay applications and in distribution management systems.  

 

While the results thus far are based on simulated data, the performance of the PSNN is very promising 

and should work for a wide variety of power system conditions of interest. Ultimately, much of the 

custom code and tools used today and much of the manual effort expended today may be automated using 

this PSNN. 
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APPENDIX B. Useful Reference Material for Machine Learning 

10.1 BOOKS 

Deep Learning, by Ian Goodfellow and Yoshua Bengio and Aaron Courville, An MIT Press book 

https://www.deeplearningbook.org/ 

 

Fundamentals of Music Processing, by Meinard Müller, Springer International Publishing Switzerland 

2015 

 

10.2 YOUTUBE LECTURES & CLASSES 

Neural Networks Demystified 

https://youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU 

@stephencwelch 

Welch Labs 

7 videos 

Last updated on Oct 2, 2015 

 

Data Science: Machine Learning 

https://learning.edx.org/course/course-v1:HarvardX+PH125.8x+2T2019/home 

PH125.8x: Data Science: Machine Learning - Course Syllabus 

Course Instructor: Rafael Irizarry 

8th course of nine in the HarvardX Data Science Professional Certificate  

 

Deep Learning 

https://youtube.com/playlist?list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT 

Prof. Mitesh M. Khapra 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY MADRAS 

NPTEL-NOC IITM 

118 videos 

Last updated on Oct 25, 2018  

 

Audio Signal Processing for Machine Learning 

https://youtube.com/playlist?list=PL-wATfeyAMNqIee7cH3q1bh4QJFAaeNv0 

Valerio Velardo - The Sound of AI  

23 videos 

Last updated on Oct 19, 2020 

 

Deep Learning (for Audio) with Python 

https://youtube.com/playlist?list=PL-wATfeyAMNrtbkCNsLcpoAyBBRJZVlnf 

Valerio Velardo - The Sound of AI  

19 videos 

Last updated on Mar 9, 2020 

 

https://www.deeplearningbook.org/
https://youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
https://learning.edx.org/course/course-v1:HarvardX+PH125.8x+2T2019/home
https://youtube.com/playlist?list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT
https://youtube.com/playlist?list=PL-wATfeyAMNqIee7cH3q1bh4QJFAaeNv0
https://youtube.com/playlist?list=PL-wATfeyAMNrtbkCNsLcpoAyBBRJZVlnf
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10.3 MATLAB HELP 

Help 

https://www.mathworks.com/help/index.html 

10.4 MATLAB EXAMPLES 

Speech Command Recognition Using Deep Learning 

https://www.mathworks.com/help/deeplearning/ug/deep-learning-speech-recognition.html 

 

Sequence Classification Using Deep Learning 

https://www.mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-

networks.html 

 

Sequence-to-Sequence Classification Using Deep Learning 

https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-

deep-learning.html 

 

Sequence Classification Using 1-D Convolutions 

https://www.mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-

convolutions.html 

 

Sequence-to-Sequence Classification Using 1-D Convolutions 

https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-1-

d-convolutions.html 

 

10.5 OTHER HELPFUL YOUTUBE RESOURCES 

Machine Learning & Deep Learning Fundamentals 

https://youtube.com/playlist?list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU 

 

3Blue1Brown 

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw 

 

10.6 MIT 

Linear Algebra (Prof. Gilbert Strang) 

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ 

 

Matrix Methods in Data Analysis, Signal Processing, and Machine Learning (Prof. Gilbert Strang) 

https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-

processing-and-machine-learning-spring-2018/ 

 

MIT Deep Learning and Artificial Intelligence Lectures (Lex Fridman) 

https://deeplearning.mit.edu/ 

 

https://www.mathworks.com/help/index.html
https://www.mathworks.com/help/deeplearning/ug/deep-learning-speech-recognition.html
https://www.mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-convolutions.html
https://www.mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-convolutions.html
https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-1-d-convolutions.html
https://www.mathworks.com/help/deeplearning/ug/sequence-to-sequence-classification-using-1-d-convolutions.html
https://youtube.com/playlist?list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
https://deeplearning.mit.edu/
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APPENDIX C. MATLAB Code 

 

11. MATLAB FUNCTION FOR POWER SYSTEM FILTER BANK  

function [filterBank, numFilters, numHops] = Fcn_PSysFilterBank(DataStore, 
DSparams, FFTparams) 

Design Power System Filter Bank (PSysFilterBank) 

Create Spectrograms to extract info for the filter bank 
    [data,~] = read(DataStore); 
     
    [S1,~,~] = stft(data{1,1}, DSparams.fs, 'Window', FFTparams.window, 
'OverlapLength', FFTparams.noverlap, 'FrequencyRange', "onesided"); % presented 
in dB 
    S1 = abs(S1); 
     

This is a power system filter bank  

    % NEED TO ADDRESS THIS 
    rowsOfS = size(S1,1); 
     
    centerHarmonics = [1, 3, 5, 7, 9, 11, 13, 15, 21, 27, 33, 39, 45, 53, 59, 65, 
71, 79, 85, 91, 97]; % odd to 15th then triplin Need DC at front end 
    centerFrequencies = centerHarmonics * 60; 
    frequencyList = [1, centerFrequencies, 6060]; % Add DC component to front and 
101st harmonic to end 
    freqRatio = rowsOfS/DSparams.fs; 
     
    Centers = round(frequencyList * freqRatio); 
    filterCount = numel(Centers)-1; 
     
    % counts for cells surrounding the Center cell 
    % counts for the cells to rise to the center 
    riseCounts = zeros(1, filterCount); 
    for i = 2:filterCount 
        riseCounts(i) = Centers(i) - Centers(i-1); 
    end 
    % counts for the cells to fall from the center 
    fallCounts = zeros(1, filterCount); 
    for i = 1:filterCount 
        fallCounts(i) = Centers(i+1) - Centers(i); 
    end 
     
    % Build the Filter Bank 
    PSysFilterBank = zeros(filterCount,rowsOfS); 
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    for i = 1:filterCount 
         % create vector of points on the rise curve 
         filtRise = zeros(1,riseCounts(i)); % initialize vector of rise values 
         for j = 1 : riseCounts(i) 
             filtRise(j) = (j - 1) / (riseCounts(i)); 
         end 
          
         % create vector of points on the fall curve 
         filtFall = zeros(1,fallCounts(i)); % initialize vector of fall values      
         for k = 1 : fallCounts(i) 
             filtFall(k) = (k - 1) / (fallCounts(i)); 
         end 
         filtFall = flip(filtFall); 
          
         % combine rise/fall into filters and add them to the bank 
         filter = [filtRise, 1, filtFall]; 
         leftPad = Centers(i)-riseCounts(i); 
         rightPad = rowsOfS - numel(filter) - leftPad; 
         PSysFilterBank(i,:) = [zeros(1,leftPad),filter,zeros(1,rightPad)]; 
    end 
     
[numFilters, numHops] = size(PSysFilterBank*S1); 
filterBank = PSysFilterBank;  
end 
 

 

12. MATLAB FUNCTION FOR CREATING THE SPECTROGRAMS 

function X = Fcn_PSysSpectIV(DataStore, PSysFilterBank, DSparams, FFTparams) 
 

Compute Power Spectrograms using the PSysFilterBank 

Distribute the extraction of Power Spectrograms across multiple workers using parfor (if 
possible).  
First, determine the number of partitions for the dataset. If you do not have Parallel Computing 
Toolbox™, use a single partition. 

    if ~isempty(ver('parallel'))  
        pool = gcp; 
        numPar = numpartitions(DataStore,pool); 
    else 
        numPar = 1; 
    end 
     

For each partition, read from the datastore, then extract the Power Spectrograms . 

    numPar = 1; 
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    for partitionIDX = 1:numPar 
     
%     parfor partitionIDX = 1:numPar 
 

 

 

        subds = partition(DataStore,numPar,partitionIDX); 
        partitionFileCount = numel(subds.Files); 
        Xpartition = zeros(FFTparams.numHops,FFTparams.numFilters*2+1, ... 
            DSparams.signalCount/2,partitionFileCount); 
        for fileIDX = 1:partitionFileCount 
            [data,~] = read(subds); 

Normalize the voltage (rows 1-3) data. Put into PerUnit. 

            for jj = 1:DSparams.signalCount/2 
                data{jj,1} = data{jj,1} / (DSparams.BaseVoltage * 1e3) / 
sqrt(2/3); 
            end    
             
             

Perform Spectrogram Calculations for each signal 

            specSet = 
zeros(FFTparams.numHops,FFTparams.numFilters,DSparams.signalCount); 
            for j = 1:DSparams.signalCount        
                [S,~,~] = stft(data{j,1}, DSparams.fs, 'Window', 
FFTparams.window, 'OverlapLength', ... 
                    FFTparams.noverlap, 'FrequencyRange', "onesided"); % 
presented in dB 
                S = abs(S); 
                spec = PSysFilterBank*S; 
                specSet(:,:,j) = spec'; 
            end 
             

Flip the current signal spectrogram from left to right 

            for i = DSparams.signalCount/2+1:DSparams.signalCount 
                specSet(:,:,i) = fliplr(specSet(:,:,i)); 
            end 

Combine Current and Voltage into single image separated by a colum of zeros. Put the current first 

and voltage second 

            specImage = 
zeros(FFTparams.numHops,FFTparams.numFilters*2+1,DSparams.signalCount/2); 
            zeroColumn = zeros(FFTparams.numHops,1);            
            for k = 1:DSparams.signalCount/2 
                current = specSet(:,:,k+3); 
                voltage = specSet(:,:,k); 
                specImage(:,:,k) = [current, zeroColumn, voltage]; 
            end 
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Combine the spectrograms into one set called X 

            Xpartition(:,:,:,fileIDX) = specImage; 
        end 
        XCombined{partitionIDX} = Xpartition; 
    end 
     

Convert the output to a 4-dimensional array with auditory spectrograms along the fourth dimension. 

    X = cat(4,XCombined{:}); 

The spectrograms are post-processed by applying a logarithm. Taking a log of small numbers can 

lead to roundoff error. 

Scale the features by the window power and then take the log. To obtain data with a smoother 

distribution, take the logarithm of the spectrograms using a small offset. 

    epsil = 1e-6; 
    X = log10(X + epsil); 
end 
 

 

13. MATLAB CODE FOR POWER SYSTEM NEURAL NETWORK (MAIN)   

Power System Waveforms Analyzed using Spectrograms 
and CNN 

clc 
clear 
PATH = Fcn_PSysPATH(0); % use 0 for full dataset, use 1 for limited dataset 

Setup & Load Data Set 

% Datastore Parameters 
DSparams = Fcn_PSysDSparams(); 
 

% FFT Parameters 
FFTparams = Fcn_PSysFFTparams(DSparams); 
 

X = struct; 
Y = struct; 
DS = struct; 
 

Create Datastores 

Train Datastore 
[DS.Train, Y.Train] = Fcn_PSysDatastore(PATH.train, DSparams); 
DSparams.labels = categorical(categories(Y.Train))'; 
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Validation Datastore 

[DS.Validate, Y.Validation] = Fcn_PSysDatastore(PATH.validate, DSparams); 

 
Test Datastore 

[DS.Test, Y.Test] = Fcn_PSysDatastore(PATH.test, DSparams); 
 

Design Power System Filter Bank (PSysFilterBank) using the 
function 

[PSysFilterBank, FFTparams.numFilters, FFTparams.numHops] = ... 
    Fcn_PSysFilterBank(DS.Validate, DSparams, FFTparams); 
 

Compute Power Spectrograms 

Compute Power Spectrograms using the PSysFilterBank on the Train Set 
X.Train = Fcn_PSysSpectIV(DS.Train, PSysFilterBank, DSparams, FFTparams); 

 
Compute Power Spectrograms using the PSysFilterBank on the Validation Set 
X.Validation = Fcn_PSysSpectIV(DS.Validate, PSysFilterBank, DSparams, FFTparams); 

 
Compute Power Spectrograms using the PSysFilterBank on the Test Set 
X.Test = Fcn_PSysSpectIV(DS.Test, PSysFilterBank, DSparams, FFTparams); 
 

Define Neural Network Architecture 

Create a simple network architecture as an array of layers. Use convolutional and batch 

normalization layers, and down sample the feature maps "spatially" (that is, in time and frequency) 

using max pooling layers. Add a final max pooling layer that pools the input feature map globally 

over time. This enforces (approximate) time-translation invariance in the input spectrograms, 

allowing the network to perform the same classification independent of the exact position in time. 

Global pooling also significantly reduces the number of parameters in the final fully connected layer. 

To reduce the possibility of the network memorizing specific features of the training data, add a small 

amount of dropout to the input to the last fully connected layer. 

The network is small, as it has only five convolutional layers with few filters. numF controls the 

number of filters in the convolutional layers. To increase the accuracy of the network, try increasing 

the network depth by adding identical blocks of convolutional, batch normalization, and ReLU layers. 

You can also try increasing the number of convolutional filters by increasing numCnnFilters. 

Use a weighted cross entropy classification 

loss. weightedClassificationLayer(classWeights) creates a custom classification layer that 

calculates the cross entropy loss with observations weighted by classWeights. Specify the class 

weights in the same order as the classes appear in categories(Y.Train). To give each class 

equal total weight in the loss, use class weights that are inversely proportional to the number of 

training examples in each class. When using the Adam optimizer to train the network, the training 

algorithm is independent of the overall normalization of the class weights. 

matlab:edit(fullfile(matlabroot,'examples','deeplearning_shared','main','weightedClassificationLayer.m'))
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Dimension Parameters 

% Network Variables 
NNvars = Fcn_PSysNNvars(X.Train, Y.Train); 
 

Training Options 

Specify the training options. Use the Adam optimizer with a mini-batch size of 128. Train for 25 

epochs and reduce the learning rate by a factor of 10 after 20 epochs. 

NNoptions = trainingOptions('adam', ... 
    'InitialLearnRate',NNvars.initialLearnRate, ... 
    'MaxEpochs',NNvars.maxEpochs, ... 
    'MiniBatchSize',NNvars.miniBatchSize, ... 
    'Shuffle','every-epoch', ... 
    'Plots','training-progress', ... 
    'Verbose',false, ... 
    'ValidationData',{X.Validation,Y.Validation}, ... 
    'ValidationFrequency',NNvars.validationFrequency, ... 
    'LearnRateSchedule','piecewise', ... 
    'LearnRateDropFactor',0.1, ... 
    'LearnRateDropPeriod',floor(NNvars.maxEpochs*2/3), ... 
    'ExecutionEnvironment',"auto"); 
 

Network Architecture 

% Network Layers 
NNlayers = [ 
    imageInputLayer([NNvars.numHops NNvars.numBands NNvars.numChannels]) 
     
    convolution2dLayer(3,NNvars.numCnnFilters,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 
     
    maxPooling2dLayer(3,'Stride',2,'Padding','same') 
     
    convolution2dLayer(3,2*NNvars.numCnnFilters,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 
     
    maxPooling2dLayer(3,'Stride',2,'Padding','same') 
     
    convolution2dLayer(3,4*NNvars.numCnnFilters,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 
     
    maxPooling2dLayer(3,'Stride',2,'Padding','same') 
     
    convolution2dLayer(3,4*NNvars.numCnnFilters,'Padding','same') 
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    batchNormalizationLayer 
    reluLayer 
     
    maxPooling2dLayer([NNvars.timePoolSize,1]) 
     
    dropoutLayer(NNvars.dropoutProb) 
    fullyConnectedLayer(NNvars.numClasses) 
    softmaxLayer 
    weightedClassificationLayer(NNvars.classWeights)]; 
 

Train the network.  
NN = trainNetwork(X.Train,Y.Train,NNlayers,NNoptions); 
 

Evaluate Trained Network 

Calculate the final accuracy of the network on the training set (without data augmentation) and 
validation set.  

Y.PredValidation = classify(NN,X.Validation); 
Y.PredTrain = classify(NN,X.Train); 
Y.PredTest = classify(NN,X.Test); 
 

ERROR = struct; 
ERROR.validation = mean(Y.PredValidation ~= Y.Validation); 
ERROR.train = mean(Y.PredTrain ~= Y.Train); 
ERROR.test = mean(Y.PredTest ~= Y.Test); 
 

disp("Epochs: " + NNvars.maxEpochs) 
disp("Dropout: " + NNvars.dropoutProb) 
disp("CNN Filters: " + NNvars.numCnnFilters) 
 

disp("Training error: " + ERROR.train*100 + "%") 
disp("Validation error: " + ERROR.validation*100 + "%") 
disp("Test error: " + ERROR.test*100 + "%") 
 

Plot the confusion matrix 

Display the precision and recall for each class by using column and row summaries. Sort the classes 

of the confusion matrix. 

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]); 
cm = confusionchart(Y.Test,Y.PredTest); 
cm.Title = 'Confusion Matrix for Test Data'; 
cm.ColumnSummary = 'column-normalized'; 
cm.RowSummary = 'row-normalized'; 
sortClasses(cm, [DSparams.labels]) 
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% Finish by sounding a train whistle 
load train 
sound(y); 
clear y 
 

 

14. MATLAB FUNCTION FOR DATA-STORE PARAMETERS  

function Return = Fcn_PSysDSparams() 
 

    DSparams = struct; 
    DSparams.variableNames = ["VA","VB","VC","IA","IB","IC"]; 
    DSparams.signalCount = length(DSparams.variableNames); 
    DSparams.powerFreq = 60; % power system frequency in cycles/sec 
    DSparams.BaseCurrent = 1; % power system Base Current to convert to PU 
    DSparams.BaseVoltage = 12.5; % power system Base Voltage in kV to convert to 
PU 
    DSparams.DS_factor = 1; 
    DSparams.sampFreq = 20000; % Sample Frequency of the original data (not 
Downsampled) 
    DSparams.fs = DSparams.sampFreq / DSparams.DS_factor; %  Sample Frequency ; 1 
(default) | positive scalar 
    DSparams.labels = categorical(); 
    Return = DSparams; 
end 
 

 

15. MATLAB FUNCTION FOR FFT PARAMETERS 

 FFT Parameters 

function Return = Fcn_PSysFFTparams(DSparams) 
    sampCycle = Fcn_PSysSampCycle(DSparams); 
     
    % Window 
    FFTparams = struct; 
    FFTparams.Nw = sampCycle.Two; % Window Width in samples; integer | vector | 
[]  
    FFTparams.window = parzenwin(FFTparams.Nw); % Nw | windowHann | windowHamm | 
... 
     
    % Hop/Overlap 
    FFTparams.hop = sampCycle.Quarter; 
    FFTparams.noverlap = FFTparams.Nw - FFTparams.hop; % Number of overlapped 
samples; positive integer | [] 
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    % Number of DFT points 
    FFTparams.p = ceil(log2(FFTparams.Nw)); 
    FFTparams.nfftCalc = max(256, 2^FFTparams.p + 1);  
    FFTparams.nfft = 1024; % Number of DFT points; positive integer scalar | 
FFTparams.nfftCalc | [] 
      
    % find the harmonic range and idividual harmoincs of interest (odd) 
    FFTparams.topHarmonic = 15; % using odd harmonics up to 15th,  51st or 101th 
    FFTparams.oddHarmonics = (1:2:FFTparams.topHarmonic); 
    FFTparams.f = (FFTparams.oddHarmonics * 60); % Cyclical Frequencies; vector 
    FFTparams.w = pi./(FFTparams.f * sampCycle.One);  % Normalized frequencies; 
vector 
     
    FFTparams.freqrange = 'onesided'; % Frequency range for PSD estimate; 
'onesided' | 'twosided' | 'centered' 
    FFTparams.spectrumType = 'power'; % Power spectrum scaling; 'psd' (default) | 
'power' 
    FFTparams.freqloc = 'yaxis'; % Frequency display axis; 'xaxis' (default) | 
'yaxis' 
     
    % Based on the Filterbank that is created in code later 
    FFTparams.numFilters = 1; % initialize value to be updated in code later 
    FFTparams.numHops = 1; % initialize value to be updated in code later 
     
    Return = FFTparams; 
end 

 

 

16. MATLAB FUNCTION FOR NEURAL NETWORK VARIABLES  

Dimenstions of the Spectrograms 

function Return = Fcn_PSysNNvars(XTrain, YTrain) 
    NNvars = struct; 
    [NNvars.numHops,NNvars.numBands,NNvars.numChannels,NNvars.numSpec] = 
size(XTrain); 
     
    % Training Options Variables 
    NNvars.maxEpochs = 25; % initial: 25 
     
    NNvars.miniBatchSize = 128; % initial: 128 
    NNvars.initialLearnRate = 3e-4; % initial: 3e-4 
    NNvars.validationFrequency = floor(numel(YTrain)/NNvars.miniBatchSize   ); 
     
    % Network Variables 
    NNvars.dropoutProb = 0.2; % Started with 0.2 
    NNvars.numCnnFilters = 25; % Started with 12. Had good success with 42 
     
    NNvars.classWeights = 1./countcats(YTrain); 
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    NNvars.classWeights = NNvars.classWeights'/mean(NNvars.classWeights); 
    NNvars.numClasses = numel(categories(YTrain)); 
    NNvars.timePoolSize = ceil(NNvars.numHops/8); 
 

     
    Return = NNvars; 
end 
 

 

 

17. MATLAB FUNCTION FOR SAMPLE CYCLE 

function Return = Fcn_PSysSampCycle(DSparams) 
 

    % Window Width 
    sampCycle = struct; 
    sampCycle.Two = floor(DSparams.fs / DSparams.powerFreq /2)*4; % rounded to 
nearest even 
    sampCycle.One = floor(DSparams.fs / DSparams.powerFreq /2)*2; % rounded to 
nearest even 
    sampCycle.Half = floor(sampCycle.One / 2 /2)*2; % rounded to nearest even 
    sampCycle.Quarter = floor(sampCycle.One / 4 /2)*2; % rounded to nearest even 
    sampCycle.Eigth = floor(sampCycle.One / 8 /2)*2; % rounded to nearest even 
    sampCycle.SixTeenth = floor(sampCycle.One / 16 /2)*2; % rounded to nearest 
even 
    sampCycle.ThirtySecond = floor(sampCycle.One / 32 /2)*2; % rounded to nearest 
even 
    sampCycle.SixtyFourth = floor(sampCycle.One / 64 /2)*2; % rounded to nearest 
even 
    Return = sampCycle; 
end 
 

 


